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\ ABSTRACT (UNCLASSIFIED)

- The Brain-State-in-a-Box (BSB) neural network is an auto-associative network. It is able to

associate vectors with other vectors. Auto-association results in a system that has been learned

to respond strongly to each input vector of a certain set of input vectors by returning this same
vector multiplied by its recollection strength, where vectors are bounded by the box. This gives
the possibility for convergence to one vector of the learned set of vectors if the actual input vector
is not known to the system. When radar signals are translated into vectors, the BSB network can
be used for radar pulse classification. The whole process of classification together with the

relation with other non-neural algorithms is shown.
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SAMENVATTING (ONGERUBRICEERD)

Het Brain-State-in-a-Box (BSB) neurale netwerk is een auto-associatief netwerk. Het associeert
vectoren met vectoren. De auto-associatie zorgt ervoor dat een systeem wordt opgebouwd dat
geleerd is om sterk te reageren op een verzameling van invoer vectoren. Dit gebeurt door bij
invoer van een vector uit deze verzameling als uitvoer eenzeffde vector te genereren,
vermenigvuldigd met een waarde die overeenkomt met de hevigheid van de reactie, waarbij de
vector gedwongen wordt binnen de box te blijven. Dit biedt de mogelijkheid van convergentie naar
één van de geleerde vectoren, ook als de actuele invoer vector niet bekend is aan het systeem.
Wanneer nu radar signalen naar vectoren worden vertaald, kan het BSB netwerk gebruikt worden
voor radar puls classificatie. Het gehele classificatie process en de relatie met andere, niet-

neurale, algoritmen wordt beschreven.
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1 INTRODUCTION

From the period of 1-12-1988 to 30-6-1989 the author has been involved with the study and
implementation of the Brain-State-in-a-Box (BSB) neural network. This report presents both the
theoretical issues and the results of practical experiments done in this period. The reader should
be familiar with the basics of neural computing (see [D.E. Rumelhan, J.L. McClelland 1987] for an
introduction).

Anderson showed on the conference of the INNS in Boston, 1988 that the BSB network can be
used for radar signal categorisation [J.A. Anderson 1988]. This has been the direct motive for
TNO to investigate its possibilities. Related articles can be found in: [J.A. Anderson 1977), [J.A.
Anderson 1983], [J.A. Anderson, M.C. Mozer 1981}, [J.A. Anderson, G.E. Hinton 1981].

Chapter 2 starts with a general introduction in descent techniques, of which the BSB network in
fact implements the most simple one. This is shown in chapter 3. In chapter 4 it is shown how the
BSB network can be used for the classification of clusters. Conclusions are given in chapter 5.
Two appendices are included. Appendix A discusses those topics from linear algebra used in this
report. Appendix B contains the documentation of C-sources used for the implernentation of the
BSB network.
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2 DESCENT TECHNIQUES

This chapter contains a summary of descent techniques. All derivations can be found in
[S.L.S. Jacoby, J.S. Kowalik, J.T. Pizzo 1972] or [H.W. Sorenson 1980}. Descent techniques
consist of three parts. Given an initial vector x pointing in N-dimensional space (having
N elements), a descent direction s, (with Isk | «1) must be found, which is a vector pointing
towards a direction evaluating to a lower value of an objective function E. This can also be
interpreted as finding a point with less energy. Second, a descent step length y, must be found,
indicating the length of the step taken in the direction determined by the s vector. Finally the
descent step must be made according to formula 2.1 so that E(xy 1) < E(xy)-

X+l = XSk (2.1)
The vector s, is a descent direction if:

E(x) +Ys)) -E (%))
lim —————
-0 v
dE(Xk+'YSk)
dy
= skTVE(xk) <0

(2.2)

Notice that the product of descent direction and the gradient gives the directional derivative. The
condition for formula 2.2 to be negative implies that the descent direction must make an angle o

with the gradient, where n/2 < o < 31/2, and that the descent direction is therefore opposite to the
gradient.

The gradient descent techniques have in common that the first or second order derivative of the
objective function is used to find its minimum. For some applications it is impossible to determine
the gradient. The conjugate descent technique offers an algorithm which in principle avoids the

calculation of the gradient.
21 Gradient descent

For the gradient descent the locally steepest direction is chosen as descent direction. The
following derivation shows that the choice of locally steepest direction leads 10 a descent direction

Page
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given by the multiplication of the inverse of a metric matrix and the gradient vector. First define
the distance d between x4 and x:

dixy,xp) = ((x)-x3) TA(xy-x5))1/2 2.3

A is a positive definite (d>0, see appendix A) NxN symmetric metric matrix. So all points x at a
distance & from x; are on a N-dimensional ellipse (see section 3.1 for an explanation of the
ellipse).

82 = (x-x0) TA (x-x;) (2.9

From a point xi we take a step Axy = Y Sy, S0 that the resulting vector is on the ellipse, and we
choose this Ax so that the associated energy E will be minimized:

min (E (x+Axy) | (Axy) TaAx, = 82) (2.5)
X

We can approximate E(xy) with the first order Taylor series expansion about x:
E (x) +Axy) = E(x3) +(Axy) TVE (x)) 2.6)
To minimize E(x;+Axy), we now must minimize (Axk)TVE(xk) because E(xy) is fixed. So:

min{ (Axy) TVE (x)0) | (Axy) ThAXy = 82} 2.7
X
One of the possibilities to find this minimum is to use the Lagrange function:
m
L(x,u) = E(x)- X ujg;ix) (2.8)
i=1

In formula2.8 u=(uquy. um)T is a vector of Lagrange multipliers corresponding to the
constrained minimization problem:

min (E (x) |gj(x) 20, j=1,2..m} (2.9
X

The primal function Lp is defined as:

Lp(x) = max L(x,u) (2.10)
u20

and the primatl problem is the problem that we want to solve:

min Lp(x) = min E(x) (2.11)
x x
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When, as in our case, the original problem is of the form min{E(x) lg‘-(x) =0, j = 1..m}, the solution
can be found by solving the classical saddle-point conditions:

V L(xg,ug) = 0

(2.12)
V“L(xs,us). = 0

with L(xg,u) < L{x,u) <L(xug)for all u20 and all x, defining the saddie-point (xg,ug)- So:

Lix,u) = (Axy) TVE (x,) -u ( (Ax) ) TaAx, -82) (2.13)
oL v
— = VE(x})-2uBbAx;, = 0 (2.14)
ox k X
8L
— = (Axy) TAAx-82 = 0 (2.15)
Su

giving: (formula 2.14 rewritten)
Axy = (u/2)A71VE (x)) (2.16)

Given the condition from formula 2.2 for descent directions, the direction of sy has been found:

s = -AT1VE(xy) (2.17)

211 First order

For the first order gradient descent for sy, given by formula 2.17, we choose A = |. This results in:

sk = -VE(x) (2.18)

The choice for v is done such that E(xk)-E{x,) will be maximized. Calculating the Tayior
expansion of E(x) about X, 1:

E(Xk+1) - E(xk+‘1ksk) (2.19)
= E (%) 13, TVE (x;) + (1 2, THess () 3,0 /2
= E () =% VE (x)) TVE (x)0) + (1 2VE () THess (%)) TE (xy) ) /2
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We require that:
dE (x ) —E {xy)
TR TVRY (2.20)
dy
VE (x,.) TVE (x;)
y= k k (2.21)

VE (%)) THess (x,) VE (%)

The first order gradient descent in fact generates directions that asymptotically converge to just
two directions. This has the consequence that the rate of convergence, particularly in the vicinity
of local minima, is very slow. As a result this method is generally regarded as exhibiting
unsatisfactory performance, especially in the vicinity of the local minimum 1

212 Second order
The second order gradient descent technique uses the Hessian matrix Hess(xy) as metric matrix,
so formula 2.17 gives:

s = -Hess(x,) "1V(x)) (2.22)

which results in descent directions provided Hess(x) is positive definite. If we assume a quadratic
cost function E = a+bTx+(x TAX)/2, then a necessary and sufficient condition for the minimum is
VE(x) = 0 (Hess(x) > 0), giving x = A"1b 2. When y=1 then:

]

Xy Xo-HeSS(xo)-IVE (xo)

xg-A"1 (b+axg) (2.23)
= -a"1lp

and thus the minimum can be found in one step. A clear disadvantage of this method is the
calculation of the Hessian matrix and its inverse.

22 Conjugate descent

Two vectors x4 and xp are said to be mutually conjugate with respect to a symmetric positive
definite matrix A, if x1TAx2 = 0. In section 2.1 (formula 2.22) it was necessary to calculate the

"

1 Only when the minimum corresponds to a hole in the energy surface.

2 This also shows that the problem of solving linear equations is equivalent to the problem
of minimizing a quadratic function.
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inverse of the Hessian. The conjugate methods are based upon the fact that the inverse of a
matrix A can be found by using n mutually conjugate vectors:

T
n XiXs
atl =3 22

(2.24)
i=1 x;Tax;

1

This is proven by showing that AA"1 = I,

221 Directional

This method uses a set of descent directions, and uses this set to minimize the objective function
without calculating a derivative. Initially they are chosen linearly independent. For each descent
direction the optimal y is found by minimizing E(x)+YSk). After the last descent step from the set
has been computed and taken, one mutually conjugate vector is computed and is added to the
set of descent directions, while the first direction is deleted from the set. So after n times updating
the set, the set will consist of n mutually conjugate directions.

222 Gradient
The conjugate gradient technique uses the gradient for iteratively tinding the set of mutually
conjugate vectors.

s

—~y

Page
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3 BSB NEURAL NETWORK

In this chapter the various properties of the BSB recall formula are shown. This recall formula is
defined as follows: (where (XminXmax) With (Xmin < Xmax). is the vector element space for the

bounding hypercube)
Kp 41 = S{xy+Wxy) (y > 0) (3.1)
Xmax X > Xpax
S(x) = x Xmin < ¥ £ Xpax (3.2)
*min X < Xmin
The energy function is defined by:
E(x) = -(xTwx)/2 (3.3

E(x) is fixed by the learning rule and forms an n-dimensional ellipse. Furthermore, each new
vector xy . ¢ represents a point on the energy surface which has less energy than vector x. This
new vector is found by adding a vector Ax=Wx, which always is orthogonal to the energy surface,
to the old vector. Finally it is shown that when the Hebbian learning rule is used, the resulting
weight matrix is positive semi-definite.

3.1 Energy curves

When diagonalizing the weight matrix W used in the energy function E, it is easy to show that £
forms an ellipse. Look at the isoclinals of E, which are a set of points x all having the same
energy Cq:

E(x) = cy
-(xTwx) /2 = c1
xTWx = co
xTsAs™1x = cy (3.4)
xTQAQTx = cy
yTAy = cy
Ay 2+hayo2+. 4hyn? = ¢
¥12/ (1A 24,22/ (1/VAy) 24, 4y 2/ (1WA 2 = ¢
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Each E(x)=c4 forms a N dimensional ellipse. The length of the i axis is 2Vc / VA;. Also each axis
points towards eigenvector x;. When W is positive semi-definite E(x) has its maximum at VE(x)=0,
or E(x)=0 for x=0. Notice that this is a reversed energy function from the ones studied in
chapter 2. This also implies that the minima of E are on an ellipse 1 which is most far away from
x=0, and therefore passes through the endpoints of the hypercube formed by formuia 3.2. Now
we can understand why the BSB model works. During learning vectors are used which represent
the endpoints of the hypercube. These vectors are becoming eigenvectors 2 of the weightmatrix.
During recall these eigenvectors determine the form of the ellipses, which therefore are directed
towards the minima of the energy function.

3.2 BSB implements first order gradient descent minimizing energy

The foliowing proof comes from [R.M. Golden 1986). It shows that the energy associated with
X1 18 less than the energy associated with x,. This implies that subsequent invocations will end
up in a vector which has in its local environment minimai energy. Because during learning these
minima are associated with prototypes, we may expect to converge to the same prototypes when
we start within an environment of each prototype. The gradient of £ can be calculated (see
appendix A), and denoted as gy:

VE (%) = gp = ~Wxy (3.5)

and so, according to formula 2.18 with s = Wx,, the BSB recall formula implements a first order
gradient descent. We want to investigate the ditference of energy A between two vectors, and use

a difference vector dy:
dk = xk+1-xk (36)
A= 28(Xk+1)'2E(Xk) (3.7)
1 So the minimum does not form a hole. instead the maximum forms a hill.

2 This depends on the learning rule. With Hebbian leaming the learned vectors will only be
eigenvectors if they are orthogonal.

Page
11
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The following derivation shows that A<0, thereby proving that BSB tries to minimize energy
associated with vectors:

A = 2E(xy41) ~2E(xy)
= 2E (dj+xy) ~2E (xy)
= = (dgtxy) TW(dy+xy) 43, Ty
= -dy Tway -dy Twx -x, Tway (3.8)
= -q, Twd, -24, Twx,
= -dy Mg, +2d, Tgy

So A<0 if dyTqy < (dTWd,) /2

First look at dkTgk. Introduce a function a(i,k) to be able to rew'te formula 3.1 as a linear
combination of each vector element:

Xppq (1) = xp (1) =Y (i, k) gy (1) (3.9)

Consider the three regions for x from formula 3.2 and determine the range for af{i,k). The first

region:

Xpin € X (1) ~¥gp (1) € xpa, ~> a(i,k) =1 (3.10)
The second region:

K (1) -¥gE (1) > xpay

-xp (1) < -Ygy (i)
*max~ ¥k ' k } g ti) < 0
X (1) < Xpay

X1 (1) = Xmax = xk(i)-m(i,k)gk(i) (3.11)

Xmax~Xk (1)
Y (1)

afi, k)

~> 0 < a(i,k) <1
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The third region:
X (1) =Yg () < xpgp

in~¥k (1) > =yg, (1)
Xmin~Xk ) k }gk(i) > 0
xx (1) > xypin

K41 (1) = xpip = X (1) -y (i, k) gy (1) (3.12)

Xmin~Xk (1)
“Yax (i)

a(i, k) =

=> 0 < a(i,k) <1

Combining the three regions tor ofik) leads to:
0 < a(i,k) €1 (3.13)
Now determine di(i) and the inproduct:

dk(i) = ~'ﬂl(i,k)gk(i)

T 2 {(3.14)
dytgy = ‘Z('Y(l(i,k)gk(i) ) <0
And look at (dy " Wdj)/2:
; lez < xTwx < |x|2
Amin Amax (3.15)

A

Aminlay 12172 < (a,Tway) /2

So, when Amin 2 0: dy Tgi < (dyTWdy)/2. Eise, when Amin <0, just calculate the condition for
which A < 0:

aTgy < (aTway) /72
“LOE, K gy () 2) < (g nE (Y0 (1, k) gy (4))2) /2 (3.16)
Y < 2Zati k) gy (102) 7 (dggp [Zeaii, k) gy (10)2)
with o(1,%)2 S a(i,k) (formula 3.13)
Y < Zlhminl

So either when W is positive semi-definite, or y<2/|lmin|. BSB will minimize an energy
function.
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Gradient vector orthogonal to energy field

Choose a vector a, with E(a)=c. Also place on E a curve 1(t) = (x4(1),x2(t),...xn(1)), 50 that for t=tg
f(tg)=a holds. This leads to the following equality:

E(f(t)) = ¢ Vt
dE (x4 (t),x5(t), .., x,(L))
117772 et %n - (3.17)
dt
VE(@ Tt (tg) = 0

So the gradient vector in a is orthogonal to every derivative of f in a, and so must be orthogonal to

the curve E(x)

34

=¢ through a (derivation from [J.H.J. Aimering 1983]}).

Hebbian weightmatrix is positive semi-definite

We want to show that matrix W formed by Hebbian learning is positive semi-definite (Amin 2 0).

All that has to

W =

XlTWXl =

be done is to show that xTWx 2 0 Vx (see appendix A):

x1x1T+x2x2T+..+xnan
xlT(x1x1T+x2x2T+..+xnan)x1
xlT(xlTxlx1+x2Txlx2+..+anx1xn)
xlTxlxlTx1+x2Txlx1Tx2+..+anxlx1Txn (3-18)
(27T T g g+ () To) T Toep b+ 0 T ) T T
leTxl|2+|xlTx2|2+..+|x1Txn|2 20
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4 BSB RADAR PULSE CLASSIFICATION

A radar receiver converts the received radar spectrum 1o a number of features or fiekds for each
detected radar. For example the frequency fieid, the level fiekd and the bearing fieid. The fields
may be distorted with noise. We want two probiems to be solved. First, a correct removal of noise,
and second, an indication of the number of radars in the neighbourhood.

The radar features are scalars (no dimensionality). A BSB network processes vectors. So a
transformation from scalars to vectors is necessary. Two transformations will be discussed. Also
results of experiments are presented and explained as much as is possible.

41 Transiation

A translation translates (converts) a scalar to a vector and vice-versa. Two translation methods
will be discussed: thermometer coding and reflected binary coding.

4.1.1 Thermometer coding

A thermometer is formed by a vector. The indicator of the thermometer is a block of vector
elements which are ON (have a high value). All other elements are OFF (have a low value). When
the scalar has a low value, the indicator of the thermometer is set low (at the beginning, which is
the left side, of the vector). Gradually, as the scalar increases, the indicator is set higher (the
block of ON vector elements shifts from the beginning of the vector to the end of the vector).
Extremes of the scalar need a special treatment, because then the width of the indicator should
decrease. A disadvantage of this thermometer coding is that it only uses n code vectors of the 27
possible vectors in the 2 hypercube. A reason for choosing this code is that it provides a simple
manner to map scalars with slightly ditfering values to vectors which are close to each other on
the hypercube (the thermometer indication of these vectors is aimost the same, and so their
hamming distance is low, and so they have few differing axis values). The conversion formula, a
discussion on a choice for the thermometer width, and the choice for vector elements are
presented.




A
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41.1.1 Conversion formula

For conversion from scalar 10 vector the following formula is used: (with s scalar, spax the
maximal field value, Sm, the minimal field value, n the number of ON vector elements for that
field).

mid = ({8=Sgin)/ (Smax=Smin))*n (4.1)

Test whether there is space at the vector beginning: (with corrlow correction number for a low
indication, w width of the block of ON elements and set to a constant value)
if (mid < w/2)

(4.2)
corrlow = (w/2)-mid

Test whether there is space at the vector end to add w/2 elements to mid: (with corrhigh
correction number for a high indication)
if (mid > n-w/2)
(4.3)
corrhigh = mid+(w/2)-n

Now mid is used as index to the x vector, around mid a total of w values are set 10 xmgay. unless
mid is at a border: (with X, the minimal value of a vector element, Xy, the maximal value of a
vector element, fi the first index which must be set in the vector 10 xmay)

fi = mid+corrlow-w/2

for (1 = 0; i < £i; i++) x(i] = xyin a
(4.4)

for (i = £i; i < fi+w-corrlow-corrhigh; i++) x[i] = %y,

for (i = fi+w-corrlow-corrhigh; i < n; i++) x[i] = x5,

Page
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As an example of a thermometer coding look at table 4.1.

0 1 1-1-1-1+-1-1-1-1-1-1 1.0
1 1 1 1-1-1-1-1-1-1-1-1 1.5
2 -1 1 1 1-1-1-1-1-1-1-1 2.5
3 -1-1 1 1 1=1-1-1-1-1-1 3.5
4 -1-1-1 11 1-1-1-1-1-1 4.5
5 -1-1-1-1 11 1=+1-1-1-1 5.5
6 -1-1-1-1-1 1 1 1-1-1-1 6.5
7 -1-1-1-1-1-1 11 1-1-1 7.5
8 -1-1-1-1-1-1-1 11 1-1 8.5
9 -1-1-1-1-1-1-1-1 111 9.5
10 -1~1-1-1=-1-=1-1-1-1 11 10.0
Table 4.1 Thermometer coding with Smin=0, Smax=11. Xmin=-1, Xmax=1. w=3, n=11. The
first column gives scalar input, the second column vector values, the last column
scalar output.

For the conversion from vector to scalar the following formula is used: (with val value of first
element of block of thermometer indication, w the number of ON vector elements the block
consists of, sy the maximal field value, s the minimal field value, n the number of vector
elements for that field)

8 = Spipnt(val+w/2) *(sp, ~8pin)/n (4.5)

4112 Choice of thermometer width

The choice of thermometer width used with the thermometer coding has consequences for the
separation of vectors during recalling. It we use Hebbian learning, only orthogonal vectors can be
recalled correctly:

Woe xgxg Terouo T by T enx T
Wx; = xlxlTx1+x2x2Tx1+. .+x1xlTx1+. .+xnanxl 4.6)
- xlTxlx1+x2Txlx2+ . +x1Txlx1+ .. +anxlxn

= [x1[x1 provided x;Txy = 0 if i # j

When vectors are formed according to the (-1,1) thermometer coding, they generally will not be
orthogonal. This is not as bad as it may seem, because thanks to gradient descent recalling, non-
orthogonal vectors can be separated too. In fact the setting of w determines the level of
orthogonaiity between input vectors. For example consider two vectors y¢ and y, consisting sach
of two fields of 11 elements. Give both fields of y4 a low thermometer coding and both fields of Y2
a high coding, and calculate the inproduct of y; Ty,, varying the value of w:

Page
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When w=1:
yp=-(¢-11-1-1-1-1-1-1-1-1-1-11-1
y=(-1-1-1-1-1-1-1-1-1 1-1-1-1-1
the inproduct leyz = 14,

When w=3:

vy =-=(¢% 1 1-1-1-1-1-1-1-1-1 111
y=(1-1-1-1-1-1-1-11 1 1-1-1-1
the inproduct leyZ = -2,

When w=4:
yy=(1 11 1-1-1-1-1-1+-1-1 111
y = (-1 -1-1-1-1-1-1 11 1 1-1-1-1

the inproduct leyz = -10.

Varying w results in varying the level of orthogonality. When we demand that non-correlated

-1 -1

vectors are orthogonal, we can derive the optimal value of w:

yi o= 1y ~lgn
y2 = (-1
y1Tyz = (-w)+(n-wtl-(wl))+(-w)

“ln-w ln-w+l

=~ n-4w

w=n/4

_ln)T

T
.1

-1

-1

-1
-1

-1

-1
-1

-1
1

-1
1

-1 -1T
1 -7

-1 -I)T

1 1T

-1 _1)T
1 T

(4.7)

This choice of w leads to a maximum of only 4 orthogonal vectors, independent of n.

4113 Choice for value of vector elements

In principle two codings are possible: (0,1) coding and (-1,1) coding. It is shown that the (0,1)
coding results in W matrices which are band matrices and so prevent some prototype recollection

(there is no information outside the bands), resulting in the choice for (-1,1) coding.

Page
18
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Consider a vector y with thermometer width w=3 consisting of 10 elements (0,1) coded with a
block of ones starting at index 4,y = (000 11100 0)7, and look at W:

00 0T

-~
(=]
o
o
fury
[
[

QOOQOOOO0O OCOOHHHOOO

OO0 O0OOOOO
OO0 O0O0O0O0OO
OOOHKFHKHOOO
OCOOOHHEHOOO
COOHKHHOOO
[=felolofofoloyo w)
OCOO0O0OO0oCOO00O
OCOO0O0OO0OCOoOO

By varying for different y¢ the value of the stan of indication but keeping w=3, the block of ones
in W shifts across the diagonal, and so the next W results: (each x denotes a matrix element
which may have a value = 0)

=

]
OCOCOOOK X X
COOOCOX X X% X
COOOX X X XX
COOX N XN X O
COX XM XX OO
oOxXMXMXXNOOO
XM XNKOOOQOO
AR XOODOO
XXX oooooo

Now take a vector yg of n elements and width w: (with s the index of the first ON bit)
Yg = (07 .. 0goy 1g..1lg4y-1 Ogyy .. 0T (4.8)

Matrix W is formed by summing ysysT for 1 <s <n. Look at Wy, (choose one ). The most
extreme elements of the block (1g and 1g,,y.1) can activate a subblock in Wyg:

Wyg = (07 .. Og_y lgoys1 -+ lg42we2 Ogizy-1 - Op)T (4.9)

and Wy, is always limited to a band of 3w-2.

412 Reflected binary coding
The thermometer code only uses n nodes of the 2™ hypercube as possible code vectors. The
refiected binary code (also called Gray code) uses each node {A.P. Thijssen, H.A. Vink, C.H.
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Eversdijk 1982]. Also scalar values which differ slightly are transiated into vectors which have a
low hamming distance.

Using the thermometer code, the hamming distance between two vectors, each representing a
scalar, increases linearly with the increase of the difference between the scalars. Using reflected
binary coding the hamming distance between two vectors representing two differing scalars can
also increase if the difference between the scalars increases, but this does not happen linearly.
The distance between the vectors representing scalars 0 and 1, d(0,1) is 1, as can be seen in
table 4.2. It can also be seen that:

d(o0,1) d(0,3)
d(0,2) = d(0,4) (4.10)
d(0,2) > d(0,3)

4.1.21 Conversion formula
For conversion from scalar to vector the following formula is used: (with 0 <s < 2" scalar,
r intermediate number, X = xp,_q .. X vector)

r=smd (2}) (1 =2,3,..,0+D
if ( r < 2i-2) Xj_2 = Epin (4.11)
if (2872 < r o< 28724287Y) x5 = xpan )
if r > Zi'2+2i'1) X{_2 = Xpin
An example of Gray coding is shown in lable 4.2.
0 -1 ~-1-1-1
1 -1-1-1 1
2 -1 -1 1 1
3 -1 -1 1-1
4 -1 1 1-1
5 -1 1 1 1
6 -1 1 -1 1
7 -1 1 -1 -1
8 1 1-1-1
9 1 1-1 1
10 11 1 1
Table 4.2 Gray coding with Syun=0, Smax=11, Xmin=-1, Xmax=1. N=4. The first column

gives scalar input (is scalar output), the second column gives vector values.
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For reverse conversion the following formula is used: (with x = x4 Xp.2 .. X the reflected binary
coded vector, sp_q Sp.2 .. S the resulting binary coded vector, s the corresponding scalar)

Sp-1 * ¥pn-1

if (8541 = Xpay) (i = n-2,n-3,..,0)
if (%5 = Xpin) 83 = Xmay

else Si = Xmin

else s; = x

(4.12)
i
1 if 5 =
b(s;) = { i © Xmax
0 if 85 = xpyn
s = bisy_1)2° L4b(s,_5)2""2+ .. +b(sq) 20

A tew remarks on the learning aigorithm which is used. When hebbian learning is used, the input
pattems should be almost orthogonal. This limits the network to n distinguishable vectors. When
delta learning is used, every set of n linearly independent vectors can be used. So afthough the
2N hypercube has 2" corners and though the reflected binary code uses each of them, only n of
them can actually be associated with a prototype with the standard BSB model. An extension
might be to develop a new BSB model with hidden units and back propagation learning process.
In fact only n-1 linearly independent vectors can be learned by an auto-associative system,
because if n vectors are learned so that Wx; = Ax; (i=1.,2, ..,n), you have fully specified the set
of eigenvectors, so the only solutionis W = | (see also section 4.2.2).

4122 Choice of value of vector elements

Again the (0,1) coding is not a good coding. With the reflected binary code not each vector has
the same amount of ON vector elements. When a vector with few ON vector elements is learned
and a vector with many ON vector elements, the first vector will get a smaller eigenvalue
(determined by the length of the input vector), and will therefore be leamed much weaker.

42 Results of experiments

First a simple 2 dimensional BSB model is used to verify the theories developed. Then an
experiment is done which tests the classification possibiiities of the BSB network.
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421 2 dimensional BSB

In this section the experiment that Anderson published in [J.A. Anderson 1983] is repeated. The
purpose is to study the recall field of a 2 dimensional BSB model. This field is a 2 dimensional
plane, bounded by xmin=-1 and xma,=1 of the vector elements. The weightmatrix is:

0.035 ~0.005
-0.005 0.035

W o=

in figure 4.1 this recall field is shown. in 1able 4.3 the numnber of steps needed for convergence is
given for each gridpoint. Because W>0, ¥ can be chosen large 1o reduce the number of steps.
See table 4.4. ’

ol ot e el o] o] ] el el Fa 2]~
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o e s feit {0l N ¢y A1y B
LS’ 300 Y ’ x|~
alofiafe 2300 BRA o aANA 4
[ SO DL 22 A

elbinldelalala 1A Al Al A ] 4
elble’d alelalal pEE o} ]
RHRLEEEEL. _IERSEABLeN
Ut At Aelelel (BT IS 3=
NiriNelel¢ NN ARNIK
P ear AN Nl -
clelelniely » >
il iVl AY M AVLY
Noehte bl g1 2 4]
P it Ay
FIVIRI LI «{EYW
wlw| el viw el e lel v = ) -

Figure 4.1 Recall field for a 2 dimensional BSB model. In each gridpoint the gradient is
drawn.

Figure 4.1 also shows the ellipses E(x)=c for different values of ¢ (c=0, ¢=-0.005, c=-0.01, .. ). The
gradient vectors indeed are orthogonal to these ellipses.
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3

Table 4.3

The values from table 4.3 perhaps will be better understood when they are put in a landscape
plot, where the height of the landscape on grid coordinate (x.y) is determined by the number of
steps for (x,y) to converge. See figure 4.2.

Figure 4.2
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Number of steps necessary for convergence with y=1.

Table 4.3 as a landscape.

10
10
10
10
14
19
24
3
40
53
77
105
55
38
27
20
13
14
14
14

[
6
7
10
14
19
24
31
40
52
76
111
57
39
28
20
14
8
9

9

0
3
6
10
14
18
24
31
39
52
74
118
58
39
28
20
14
9

4
0

Page
23




TNO report

Page
24

ORI R R P R R O
B e B e B Bt S B Bt e B e e e b
(b Bt b b e B e Bt B B e b
B e e ey S e L
B et e B et A e e e e e b
b et Bt b et bt e e et B e
i b b e 1 e 2 B b N B B b bt e b e et b
B 43 e b e Bt et et et e B e
1 1 2 1 e et 1 B e
b ek b e bt et et e e B S N e e b e
T bt b b B N B b i b et b e e
1 bt e e B B e e e e Bt B B e
3t B B Bt B B e e et Bt b e e
s B 1 S e e R B b e e b e
1 B e 10 Bt et e e b e e
B S b 1 bt et b Bt B B b e (D el el b e e
Bt 1 1 b S et et e b bt (e B e e
o e 1 1 et B S e s 1 1 e
B s et B b et bl b e e b e e e (b e e e
OR PRI R R R RO

Table 4.4 Number of steps necessary for convergence with y=1000.

422 Clustering

For the experiments the following parameters are used. The neural network consists of 22
completely linked neurons. Each radar signal consists of two fields. Each experiment is done four
times. First each fiekd is thermometer coded with a thermometer width of 3 and both Hebbian and
delta learning is used, then each field is Gray coded and both Hebbian and delta learning is used.
Each field serves as input for 11 neurons (w=3, n=11 for each field). During recalling each
possible inputvector in the inputrange is generated and the stable outputvector belonging to these
inputvectors is drawn in a two-dimensional plot. For simplicity both x and y field values are
between 0 and 11 (so (0,0) corresponds with the upper left corner, (10,10) with the lower right
corner, Smay=11, Smin=0). When delta learning is used, L.coef is chosen 0.05, and each pattern is
leamed 5 times, after which randomly another pattern is learned 5 times. This is repeated until all
patterns have been learned.

4221 One radar

The radar leamed is at (1,1) 1 Look at figure 4.3 for the recall diagram. In this figure and in ali
following figures the arrows in each gridpoint (x,y) point to the stable gridpoint (v,w) to which (x,y)
converges when formula 3.1 is applied recursively.

1 Recall values will be at (1.5, 1.5), see table 4.1.
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Figure 4.3 Recall diagram for one radar consisting of two fields, learned at (1,1) using

thermometer coding.

Points (.) in the plot represent vectors of which the recall vector equals the original vector. There
are two kinds of these vectors. First the radar point (1,1), which is learned to be an eigenvector,
and so Wx=2, with A=22. Because only one vector is learned, there will be 21 eigenvectors with
A=0 (A=0 has multiplicty 21). This implies that there exists a 21 dimensional plane on which
vectors are lying with Wx=0. These vectors form the second group equilibrium points. The energy
of these vectors is E(x) = -(xTWx)/2 = -(xTO)/2 = 0. The diagram also shows another interesting
feature. Although no radar is learned at (7,7), a lot of arrows are pointing towards this point. Again
the explanation is simple. When Wx = Ax, then also W(-x) = -Wx = -Ax = A(-x), or when x is an
eigenvector then also -x is an eigenvector. We have learned the following vectors:

1-1-1-1-1=-1-1-1-1 11 1¢-1=1-1-1-1-=1-1T7

1,y = t1 1
(.1 -1-1 1 1 1 1 1 1 1 1-1-1-11 1111 1 1T

non

The radar corresponding 10 -x will be: (with formula 4.5)

rad = spin+(val+w/2) *(Spay-Spin) /0
(3+(8/2)*11/11,3+(8/2)*11/11) (4.13)
(7,7)

Also notice that the energy of eigenvector -x equals:

E(x) = -(xTwx)/2
E{-x) = ~((-x)TW({-x))/2 (4.14)
= E(x)
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This leads to two remarks, concerning the fact that we don't want to reach equilibrium points
which are not a result of x (of learned prototypes). First, it is, for this example, easy to escape
from Wx=0 points. Because Ex=0, these x points will be located at the top of the energy
landscape, and when one element of x is changed so that E(x) # 0, x will converge to a learned x.
In fact this implements simulated annealing [P.J.M. Laarhoven, E.H.L. Aarts 1988) (x is given a
little push, so it rolls down from the top of the hill). For the second group of equilibrium vectors,
the obvious solution is to invert the vector when the recalled thermometer width is greater than
the expected thermometer width.

Greenberg [H.J. Greenberg 1988] has studied equilibria of the BSB neural model. One result is
that when W is strongly diagonal-dominant 2 each extreme point (endpoint of hypercube) is
stable. It can be proven that, when starting in the neighbourhood of each extreme point, BSB will
converge fo the extreme point. The other result is that when W is strongly diagonal-dominant, and
x is a fixed point which is no extreme, then x is not stable. This occurs when Wx=0.

In figure 4.4 the recall field is shown when Gray coding is used. Each input vector is recalled
pertectly.

) RNV Ll L Ll el ke
‘ a NN IR
| AN ENE
| PITTVIN NS SIS (S S~
TITIVIA TN IS IS IS SIS S

T VA TS IV VIS IS

TITIVIVIAV TV IV INIS NS

TIVIV IV TV IV IS IV IS S

TIVTVTV VSN IV N INV[N S

TIAIVEVIVINVIVINVIN

Figure 4.4 Recall diagram for one radar (1,1) consisting of two fields, using Gray coding.

2 W is strongly diagonal-dominant when each diagonal element is larger than the sum of
the rest of the elements of the row the diagonal element belongs to.
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4222 Two radars
Two radars are leamned, at (1,1) and (9,9). Look at figure 4.5 for the recall diagrams.

N A R P V[iTvirlel-[-l=]}]!
ﬂth—Fb—b - - == = 1= | fo= |o= -
SiTINISISISTST=T,T1 1 nsIsIsTsT=T1 ]!
TN IST=1710 8 TR NSNS <73 [T
TIVIVIN ISP =gV i | PITENVISIN e A
PITIVIVi=) ==V TH{YIV=] =18l
MO ORI HUANENNEADDT
TPV UTEININIVIT Y RN
IR i ASSIRSEINIE
Ti=1=1={=1=1=1"11 (% ‘[;..Aa.a.a.a)'[\

Figure 4.5 Recall diagram for two radars (1,1), (9.9), using thermometer coding and Hebbian
leaming (left) or delta learning (right).

As can be expected, the region above the diagonal converges 10 (1,1) and the region below the
diagonal to (9,9). On the diagonal are equilibrium points. These extra points are (0,10), (1,9).
(5.5), (9.1) and (10,0), both when Hebbian and deta learning is used. In each of these points the
gradient vector has the direction: (This is only checked for Hebbian learning)

(00 01 11110 00C0UO0T1T11T1T10 0 0T
The gradient has a zero component in the direction of each prototype. This results in the vector:
(|1-1-1 111 1 1-1-1-1-1-1-1-1 1111 1 1-1-1-1T,

or scalar (6.5, 5.5).

See figure 4.6 for the recall field when translation is done with Gray coding. It appears that (1,9),
(6,6) and (9,1) are extra equilibrium points when Hebbian leaming is used.




TNO report

!_‘-lv'/""""‘-l/' M v e e e e e TeTe
SN SESOSNER MTINVISISS s [ e[|
TITIVINISISIS=T7ITTIA TITIRANKKIS S [< <<
PIVIVIN Iy VLTV [V TTIIVININISISISTY T Y
TITIVIVINIS UV THTIYIAVINVINISISTY T TS
TIVIV IV ][=1=1 =]V ] TITIAVIVIN SIS T T Y
T V2 PNV FITIVIVIN IS NN VLY
SRR TH VIV ST [SS e
T PR ELE RN
CITINEPPRPPPTOR NINSEEEEIN

Figure 4.6 Recalt diagram for two radars (1,1), (9.9), using Gray coding and Hebbian
leaming (left) or delta learning (right).

From table 4.2 it can be derived that for s=4, 5, 6 and 7 the corresponding vector has the same
Hamming distance to s=1 and s=9. When a field has one of these values, the output is s=6, which
has the minimal Hamming distance 1 to s=1 and s=9. When delta learning is used, the extra
equilibrium points have disappeared and are replaced by convergence to the radar (1,1).

4223 3 radars

The third radar is placed at (8,8). Figure 4.7 shows that the diagonal has moved towards the
upper left corner both for Hebbian and delta learning. The gradient is: (checked only for Hebbian
leaming)

(42 42 42 30 30 30 30 -6 -42 -42 -6 42 42 42 30 30 30 30 -6 -42 -42 -¢)7
This gives rise to the vector
(1 111 1 1 1-1-1-1-11 11 1 1 1 1-=-1-=-1-1-1T

or (35,35).
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Recall diagram for 3 radars (1,1), (9,9), (8,8), using thermometer coding and

Hebbian learning (left) or delta learning {right).

Figure 4.7

Figure 4.8 shows the recall diagram for Gray coding. Only one stable point (9,9) exists when

Hebbian learning is used. Inspection of the weight matrix (for one field):

3-1-1 3 3 3 3 3 3 3
3 3-1-1+~1-1-1=-1-1

3-1-1-1+~1-1-1-1-1-1-=1
-1

-1 -1

-1 -1

-1

-1

-1

-1

-1

-1

W =

1-1-1-1-1-1~1-1)7, 0rscalar9.

1

So each Wx will have direction ( 1 -1
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Recall diagram for 3 radars (1,1), (9,9), (8,8}, using Gray coding and Hebbian

leaming (left) or delta learning (right).

Figure 4.8

4 radars

4224

Figures 4.9 and 4.10 show recall fields when 4 radars are learned. These diagrams correspond

with the diagrams of 2 learned radars.

Recall diagram for 4 radars (1,1), (1,9), (9,1), (9.9), using thermometer coding

and Hebbian learning (left) or delta leaming (right).
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Figure 4.10 Recall diagram for 4 radars (1,1), (1,9). (9.1), (9.9). using Gray coding and
Hebbian learning (left) or delta learning (right).

When Hebbian learning is used, extra stable equilibrium points are formed on each separation
line between two radars. With delta rule learning these extra points aiso converge to a learned
radar 3.

4225 How many radars can be learned?

For the last experiment it is verified whether a network of n neurons can learn n-1 prototypes. The
network used consisted of 8 completely linked neurons for one field. Only delta rule learning is
used, and Gray coding. The following seven prototypes are learned: 12, 20, 45, 63, 128, 211 and
233. Lcoef is 0.05 and each pattem learned 7 times. The following weight matrix is formed:

7.6 -0.8 -0.0 1.2 0.0 0.4 0.8 -0.4

-0.8 6.4 -0.0 2.4 0.0 0.8 1.6 -0.8

-0.0 -0.0 8.0 -0.0 0.0 -0.0 0.0 -0.0

W= 1.2 2.4 -0.0 4.4 0.0 -1.2 -2.4 1.2
0.0 0.0 0.0 0.0 8.0 0.0 -0.0 0.0

0.4 0.8 -0.0 -1.2 0.0 7.6 -0.8 0.4

0.8 1.6 0.0 -2.4 -0.0 -0.8 6.4 0.8

-0.4 -0.8 -0.0 1.2 0.0 0.4 0.8 7.6

it can be verified that the seven prototypes are indeed eigenvectors of this matrix, with A=8 for
each vector.

3 To which prototypes they are converging deserves further attention, because the chosen
prototype appears to be not aiways a fair one.
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Now prototype number eight (with a value of 254) is added 1o the set, and the whole set is learned
again (starting with W=0). The weight matrix which is formed: W=8!. So the system is not able to
form the nth gigenvector.

Looking again at the weight matrix formed by learning the seven prototypes, shows that it forms a
strongly diagonai-dominant matrix. This implies that each hypercube corner is stable. This has the
consequence that the BSB recall will not converge to one of the prototypes, but instead remain on
each stable hypercube corner.
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5 CONCLUSIONS AND FURTHER RESEARCH

The BSB neural network implements a first order gradient descent algorithm, capable of solving
nonlinear optimization problems such as radar pulse classification. A first step has been done
towards the implementation of radar pulse classification with a BSB network.

The experiments show that the BSB network is able to remove noise from signals, if the original
signals are learned in a separate learning phase. A network of n neurons can learn n-1 radars
effectively. Noisy input can be recalled by the BSB network to one of these n-1 radars, if the
weight matrix is not diagonal-dominant.

When there is no separate learning phase, learning and recalling can be combined. A number of
radar data samples is processed, after which the number of stable corners indicates the number
of different radars (clusters). Further research is required to study and implement this possibility.

The BSB neural network can also be used in other applications. TNO-FEL has studied and
implemented a Spatio-temporal Pattern Recognition (SPR) neural network to recognize garbled
text strings in messages [P.P. Meiter 1990]. This recognition can also be done using a BSB neural
network. Each character of the string is represented by a field using 5 bit Gray coding. This
approach may be more efficient than the SPR network because there is no time sequence
involved. However, the number of iterations required for the BSB network to converge to the
correct result is as yet unknown. A comparison may give interesting results.
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LINEAR ALGEBRA
1 Eigenvalues and eigenvectors

Eigenvalues and eigenvectors form one of the most important concepts of linear algebra. In this
section it is shown how a matrix A can be diagonalized, thus revealing its eigenvalues and
eigenvectors. The derivation comes from [G. Strang 1980).

Ax = Ax, A eigenvalue, x eigenvector

AS = Alsl . snl, S matrix of eigenvectors
= “.151 .. ann|
Aysyy .. Agspy
_ [Msaz .- Ansn2
A1sin -+ Anpspp
s11 .- sh1 A 0 0
512 .- Sn2 6 )\2 0
= . X
Sin .- San o .. 0 A
= S x A
ass™1 = sas™i

A = sAs”!

We now look at the matrix of orthonormal eigenvectors Q

qlg
79 = | B2 | |
Qg = |.° x lgy a3 .. ap
a,T
eTo = 1
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A= OAQT
xTax = xTQI\QTx
= yTAy (choose y = oTx)
A 0 .. 0
1 Y]
0 12 .o 0 Y2
=IY1 Y2 ..yn|x .. x ..
00 .. 0 A, Y
Aryy
Azv2
= |Y1 Y2 .- ynl X ..
Anyn

AMyi2+hoyo2+ L. 4hyn?
> Aninlv 12 = Ay 212 < xTax € Ay v 12 = Ao lx 12

A matrix A is called positive semi-definite when all eigenvalues are greater than or equal to zero,
$0 Amin 20, or xTAx 2 0. When Amin > 0, 50 X TAx > 0, A is called positive definite.

2 Linear operators

In this section a summary is given of elementary differential operators [H.W. Sorenson 1980].

The first order derivative of f (written as a row vector):

of of ot |T
5 lox; T axg
= Ve

The second order derivative of f, also called Hessian (or Hess), forming a (nxn) matrix:

82 & of
8x2  &x bx
= — Vs

dx

The following derivatives are used:

3(cTx)
8x
S (ax)
=}

dx
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The chain rule:

Sf (u) 8f du
8x Su 6x

As an example the chain rule can be used to find the derivative of f = xTAx:

f = xTaAx
g(x,y) = xTy, v = Ax
of 5 &g &y
& & b bx
= T+ xTa
= xTaT + xTa

= xT(a + aT)
if A = AT, then Vf(x) = 2ax.
Second order Taylor series approximation in the neighbourhood of x:

f(x+h) = £(x)+hTVE (x)+ (hTHess (x)h) /2
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DOCUMENTATION OF C-SOURCES

1 Short description of each file

The name of each C file is an abbreviation of its function. This function operates on data. Data
has a certain format and a certain type.

The ASCHi format represents readable numbers (integers or floats). Binary format represents
bytes.

Scalar type indicates that the data must be interpreted as single entities. Vector type indicates
that the data forms a sequence of vectors. Matrix type indicates that the data forms just one
matrix. To use the BSB network for garbled string recognition also String type can be chosen

When the function specifies a conversion, it converts input with a certain format and type to output
with a certain format and type. So a good mnemonic for a conversion file should give an indication
of the formats and types it expects for its in- and output. The first letter of characterizing format
and type is a good choic> (A = ascii, B = binary, S = scalar, V = vector, M = matrix, S = string).
Unfortunately this gives rise to too long mnemonic names (at least 4 letters). Each name is limited
to 3 letters with the addition of the full name it actually stands for.

Finally for each file is given whether it contains a main program, and if so the name of the
executable it generates, or a routine. Common parameters for all programs (such as the number
of neurons) are read from one file BSB.PAR.

2D: main for 2D, creates a two dimensional plot consisting of a field of arrows, optionally it
also generates a memory dump (picture file) or invokes PRNT to generate a print file

2Dpl:  routine 2Dpl, does the real plot work

3D: main for 3D, creates a three dimensional plot, z-axis values forming the height of a x-y
plane, optionally it also generates a memory dump (picture file) or invokes PRNT to
generate a print file

ACB: routine (short for ASCBS, ASCII scalar convert to binary scalar), ASCH convert binary,
conversion of formats, noise generation is optional

ACM:  routine (short for AMCBM, ASCII matrix convert to binary matrix), ASCIi convert matrix,
conversion of formats

ACS:  routine (short for ASCAS, ASCII scalar convenrt to ASCII string), ASCIl convent string,
conversion of types

Page
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ACV:

ADD:
ALLOC:

BCA:

BCvV:

EIG:
ENG:
GRPH:

1SO:

LRAN:

MACB:
MACM:
MACS:
MACV:
MBCA:
MBCV:
MCA:

MEIG:

MENG:
MISO:

MJOb:
MLRN:
MMCA:
MPGN:
MRCL.:
MSCA:
MVCA:
MVCB:

routine (short for AVCBV, ASCII vector convert to binary vector), ASCII convert vector,
conversion of formats

main for ADD, adds two picture files to a sum file

routines tmalloc and tcalloc, tests whether space can be allocated and if so, it does, else
programs stops

routine (short for BSCAS, short tor binary scalar convert to ASCII scalar), binary convert
ASCII, conversion of formats

routine {short for BSCBV, binary scalar convert to binary vector), binary convert vector,
conversion of types, either according to thermometer or Gray coding

routine, caiculates eigeﬁvalues and eigenvectors

routine, calculates energy

routines SetCursorPos and ReadCursorPos

routines tfopen and tfopent, test whether tiles can be opened and if so, it does, else
program stops

routine, calculates isoclines, optionally it aiso creates a memory dump or invokes PRNT
to generate a print file

routine, learns a file and returns a weight file

main for ACB

main for ACM

main for ACS

main for ACV

main for BCA

main for BCV

routine (short for MBCMA, matrix binary convert to matrix ASCIl), matrix convert ASCII,
conversion of formats

main for EIG

main for ENG

main for ISO

main for JOB, a batch file for LRN and RCL

main for LRN

main for MCA

main for PGN

main for RCL

main for SCA

main for VCA

main for VCB
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MVCW:
MWCV:
PGN:
PLT:
PRNT:
R2D:
R3D:
RACB:
RACV:
RBSB:
RCA:

RCL:
RD:
REIG:
RENG:
RFCP:

RISO:

RJOB:
RNRF:
RSOU:
RUTL:

RVCW:
RWCV:
SCA:

TEST:
UTIL:

VCA:

VCB:

main for VCW

main for WCV

routine, find prototypes

routine, piots a picture file

routine, translates a plot to a print file

read parameters for 2D

read parameters for 3D

read parameters for ACB

read parameters for ACV

read general BSB pararﬁeters

main for RCA, (short for RBSCAS, radar binary scalar convert to ASCIi scaiar), radar
convert ASCII, conversion of the format of radar file (generated by LOCK-ON simulator)
to ASCl! scalar format

routine, recalls a file given a weigth file

read common parameters for 2D, 3D and I1SO

read parameters for EIG

read parameters for ENG

read parameter RFCP (fraction connection parameter, 1 is fully connected, 0 is not
connected)

read parameters for ISO

read parameters for JOB

read parameter NRF

read parameter source (whether ASCHi or scalar, both for RCL and LRN)

routine search, a read utility, searches in parameter file for a keyword, stops
immediately after keyword if found, else program stops

read parameter for VCW

read parameter for WCV

routine (short for ASCAS, ASCII string convert to ASCIl scalar), string convert to ASCII,
conversion of types

main for TEST

routines normalize, cmwyv, rndcon, limit

routine (short for VBCVA, vector binary convert to vector ASCII), vector convert ASCII,
conversion of formats

routine (short for VBCSB, vector binary convert to scalar binary), vector convert binary,
conversion of types

Page
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VCW:

WCV:

Page
B84

routine (short for VBCWB, vector binary convert to weight binary), vector convert weight,

generates the weight matrix
routine (short for WBCVB, weight binary convert to vector binary), weight convert vector,
given a weight matrix, it generates the BSB recall vector
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The mutual connection between the executables is given in figure B.1. In this figure datafiles are

Structure of conversion executables

surrounded by squares and next to each line the name of an executable is given.

LOCK
ON

ASCII
string

sca

rca

Figure B.1

acs

ASCII

scalar

acb

bca

binary
scalar

bev

acv

vch

binary
vector

wWeyv

vca

Connections between the conversion programs.

ASCII

VCwW
acm

NEURAL

WARE

mca

ASCII

matrix




~

TNO report

Appendix B

The Irin program invokes the following programs, depending on the value of LrnSource
(BSB.PAR). When LmSource = string: sca, acb, bcv, vew, when LmSource = scalar: acb,
bev,vew, when LrnSource = vector: acv, vew. So Irn transforms an input file with a certain type to
a binary matrix or weight file. The rcl program invokes the following programs, depending on the
value of RciSource (BSB.PAR). When RcliSource = string: sca, acb, bev, wev, veb, bea, acs, when
RclSource = scalar: acb, bev, wev, veb, bea, when RciSource = vector acv, wev, vea. So rcl
transforms an input file with a certain type via a weight matrix to an output file with the same type
as the input file.
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